Sunday, February 26, 2017

Weather in Owyhee Moutains

My daily walk and a drive to town, gave me two opportunities to see weather in the Owyhee Mountains (the mountain range south of NearSys Station).

A snowstorm in the Owyhees
Fog near the base of the Owyhees

Saturday, February 25, 2017

UAVSonde for NearSys Station, 25 February 2017

The pressure sensor was recalibrated this week at the Boise Airport. The National Weather Service reports the air pressure hourly and converts it to sea level pressure for aircraft. I did not make an adjustment for the local temperature, so I will need to recalibration again some time. Afterwards, I will investigate how temperature affects the readings from the pressure sensor I'm using.

UAVSonde data were collected at 11:00 AM. Here are the data.

Altitude: 2,303 feet
Temperature: 40 *F
Relative Humidity: too cold to measure
Pressure: 929.5 mb

Altitude: 2,621 feet
Temperature: 36 *F
Relative Humidity: too cold to measure
Pressure: 916.9 mb

Friday, February 24, 2017

Balloon Launch for the Earth Science Classes at the Treasure Valley Math and Science Center

Friday, February 24th was partly spent launching two weather balloons for my school's earth science class. Currently the students are in the meteorology unit and a balloon launch and UAVSonde flight were perfect activities. One launch took place in the late morning and the second one in the early afternoon. The payload for this launch was a bag of student-made paper airplanes. Students put their names on the planes they made. Contact information for the school was printed on the airplane in case it was found again. A second, smaller balloon acted as the altitude switch that would open the bag carrying the paper airplanes.

The first launch took place in clear skies. So the students watched the balloon climb for about three minutes, or when it reached an altitude of 3,600 feet AGL. The balloon was observed drifting in the southeast direction, indicating winds were from the northwest.
The morning Earth Science class getting ready to start the countdown.
The second launch took place after puffy cumulus clouds had appeared. Students observed that the weather balloon disappeared in a cloud 2 minutes 45 seconds after launch. This length of time indicated the cloud base was at an altitude of 3,300 feet AGL. Students saw the balloon again about 10 minutes after launch, or at 12,000 feet AGL. This time the balloon had moved further north and heading generally in that direction. The second observation showed students that the winds were blowing in a different direction at that altitude.

The second balloon on its way to a cumulus cloud

Following the balloon launches, I sent up a UAVSonde and collected weather data. Here are the data from those flights.

Morning UAVSonde
Altitude: 2,426 feet
Temperature: 36 *F
Relative Humidity: too cold to measure
Pressure: 916.9 mb

Morning UAVSonde
Altitude: 2,916 feet
Temperature: 29 *F
Relative Humidity: too cold to measure
Pressure: 913.1 mb

Afternoon UAVSonde
Altitude: 2,588 feet
Temperature: 43 *F
Relative Humidity: 18%
Pressure: 918 mb

Afternoon UAVSonde
Altitude: 2,818 feet
Relative Humidity: 24%
Pressure: 912.4 mb

This was a fun pair of launches and reinforced how great this would be to do for a living and not just a hobby.


Thursday, February 23, 2017

Fun with Electrostatics Class, day 2

On the second day, Students learned about the Electrophorus and Leyden Jar. The Electrophorus was popularized by Alessandro Volta and is a pertpetual source of electrostatic charge (or at least until its insulating base loses charge). The Leyden Jar was developed by several people, one of them working at the University of Leyden (Pieter Musschenbroek). The Leyden Jar is a storage device. One can add charge to it to increase the charge stored in it.

So after building both devices, Students taking the Fun with Electrostatics class used the Electrophorus to generate a charge and then added that charge into the Leyden Jar. A shock from an Electrophorus is mild, but the shock from the Leyden Jar is very strong after adding charge from the Electrophorus ten times!

That's another charge added to the Leyden Jar

Monday, February 20, 2017

The Growth and Evolution of a Cloud in Three Parts, visible, near infrared, and thermal infrared

I put together a 80 second time-lapse video of a cloud east of NearSys Station. The images were recorded using the BalloonSat Imager that I am developing. The BalloonSat was turned on its side and programmed to record images with its three cameras every few seconds.

The video is now online at my YouTube Channel at, https://youtu.be/3Mzo6hlK0vI

The resulting video shows the cloud first in visible light. That way viewers can get their bearing. The near infrared image penetrates the atmosphere so well that details in the cloud are much sharper. The final portion of the video shows the cloud during the same time frame, but in heat images.

One thing to note is how the small cumulus cloud that popped up before the cumulonimbus is cooler than the cold stratus cloud above the cumulonimbus.

Here are three screen shots to help illustrate this.

Color Image


Near Infrared Image


Thermal Infrared Image

Sunday, February 19, 2017

UAVSonde for NearSys Station, 19 February 2017

UAVSonde data were collected at 7:10 AM. Here are the data.

Altitude 2260 feet
Temperature 36 *F
Relative Humidity 100%
Pressure 1002.9 mb

Altitude 2637 feet
Temperature 40 *F
Relative Humidity 100%
Pressure 985.0 mb

Thursday, February 16, 2017

Fun with Electrostatics Class: Day 1

The first day of Fun with Electrostatics taught students the history of electrostatics (briefly), the background on the nature of electrostatic charge, and the triboelectric series. The students then did basic experiments to reinforce what they were taught. These experiments included charging objects by friction, polarization, and conduction and seeing that like charges repel each other.

Kurt levitating a plastic ring using only electrostatic charge.
It's science magic! 
    

Monday, February 13, 2017

Great Horned Owl

On many of my recent evening walks, I have caught the hooting call of two Great Horned Owls. I have even managed to catch sight of one of them. This evening's walk was a little different in the owl decided to stay in place as I used my cellphone camera to get a picture of him or her.

Ever get the feeling you're being watched?

Sunday, February 12, 2017





A modification to the BalloonSat Recording Photometer expanded it's capabilities to function as a Photopolarimeter. A Photopolarimeter is a device to measure the intensity of light in different wavelengths and their amount of polarization. Most people are familiar with the fact that the brightness of light varies throughout the day, but not to the fact that the sky polarizes sunlight and how it can change throughout the day. The images below show how sky brightness varies as a Polaroid filter is rotated 90 degrees.


The experiment run at NearSys Station on February 11, 2017 was an attempt to detect both changes in polarization and intensity of sunlight in the eight different spectral bands listed below.

Infrared (940 nm)
Infrared (890 nm)
Red (660 nm)
Orange (620 nm)
Yellow (595 nm)
Green (505 nm)
Blue (470 nm)
Violet/UV (400 nm)

Polarization was measured in the North-South direction and then the East-West direction by comparing the intensity of sunlight in the above eight spectral bands as a polarizing filter was rotated over the light sensors. During the experiment, the Photopolarimeter was pointed due south and at an elevation of close to 45 degrees.

Sunrise occurred at 7:48 AM and sunset at 6:11 PM (18:18 hours). The sun was due south at 1:00 PM (13:00 hours). The sun's elevation at 1:00 PM was 32.5 degrees.

The Photopolarimeter slipped at 2:17 PM (14:17 hours) and remained pointing up until corrected at 2:41 PM (14:41 hours). However, the angle the Photopolarimeter was reset to was slightly lower in elevation that before.

Here are some things to notice.

1. From sunrise to 10:00 AM, sunlight has greater polarization in the East-West direction than North-South direction. At 10:00 AM, the sun was located at an azimuth of 133 degrees (southeast) and elevation of 19.5 degrees.

2. From 10:00 AM to 1:00 PM, sunlight has greater polarization in the North-South direction than the East-West direction. At 1:00 PM, the sun was located at an azimuth of 180 degrees (south) and elevation of 32.5 degrees.

3. From 1:00 PM to 4:15 PM, sunlight has greater polarization in the East-West direction than North-South direction. At 4:15 PM, the sun was located at an azimuth of 230 degrees (southwest) and elevation of 17.2 degrees.

4. After 4:15 PM, sunlight has no preferential polarization.

5. The amount of polarization is greatest at yellow (595 nm) and weakest at infrared (940 nm and 890 nm) and violet/UV (400 nm).

6. The intensity of red (660 nm) and infrared (890 nm and 940 nm) spiked from 5:35 PM to sunset. This peak was not observed in any other colors. At 5:35 PM, the sun was located at an azimuth of 246 degrees (west-southwest) and elevation of 6 degrees.








The Photopolarimeter will run several more days, weather permitting. The next experiment will involve placing the Photopolarimeter straight up. Later, the experiment will be run a third time with the Photopolarimeter pointing at the horizon. Later experiments will point it to the north.

An Update
After a discussion with Mr. Forrest Mims, I came to realize that Polaroid film is designed to be most effective at particular wavelengths. Since the Polaroid film I used is designed for eyeglasses, it should be more effective in the green-yellow portion of the electromagnetic spectrum (where human eyes are most sensitive). That may explain the greater polarization seen by the green and yellow LEDs.

Photons in the blue end of the spectrum have wavelengths so short that they can pass through the Polaroid film in either vibration orientation. Photons in the red end have wavelengths so large they can't be effected by the Polaroid film.

So off to find new polarization films.

You can read what Mr. Mims is up to at his website, forrestmims.org.



Saturday, February 11, 2017

UAVSonde for NearSys Station, 11 February 2017

UAVSonde data were collected at 5:15 PM. Here are the data.

Altitude: 2226 feet
Temperature: 43 *F
Relative Humidity: 33%
Pressure: 1016.0 mb

Altitude: 2624 feet
Temperature: 43 *F
Relative Humidity: 25%
Pressure: 1014.0 mb

This is the first UAVSonde to detect no change in air temperature at altitude.

Saturday, February 4, 2017

UAVSonde for NearSys Station, 4 February 2017

UAVSonde data was collected at 4:15 PM. Here are the data.

Altitude 2283 feet
Temperature 47*F
Relative Humidity 46%
Air Pressure 1012.7 mb

Altitude 2676 feet
Air Temperature 50*F
Relative Humidity 42%
Air Pressure 994.9 mb

The data shows a temperature inversion over NearSys Station. Data further indicates that the relative humidity peaked at 54% at an altitude of 2375 feet. This is the first time I recall seeing the relative humidity peak during ascent like this. I will need to watch this more closely on future sonde flights.

Friday, February 3, 2017

Community Education Class on Electrostatics

I'm preparing my next Community Education with the Boise School District. This class begins on February 15th and teaches an introduction to electrostatic. Like my other classes, this one will also be strongly project based. The image below shows all the projects my students will build as they learn about electrostatics.


Students taking Introduction to Electrostatics will build and test the following items.

1. Charging items through friction, induction, and conduction.
2. Electrophorous
3. Leyden Jar
4. Versorium
5. Electroscope
6. Paschen Want
7. FET Electrometer

You still have to sign up for this class. Visit BoiseLearns.org for information and registration.